Share Email Print

Proceedings Paper

Geometrical study on two tilting arcs based exact cone-beam CT for breast imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Breast cancer is the second leading cause of cancer death in women in the United States. Currently, X-ray mammography is the method of choice for screening and diagnosing breast cancer. However, this 2D projective modality is far from perfect; with up to 17% breast cancer going unidentified. Over past several years, there has been an increasing interest in cone-beam CT for breast imaging. However, previous methods utilizing cone-beam CT only produce approximate reconstructions. Following Katsevich's recent work, we propose a new scanning mode and associated exact cone-beam CT method for breast imaging. In our design, cone-beam scans are performed along two tilting arcs for collection of a sufficient amount of data for exact reconstruction. In our Katsevich-type algorithm, conebeam data is filtered in a shift-invariant fashion and then backprojected in 3D for the final reconstruction. This approach has several desirable features. First, it allows data truncation unavoidable in practice. Second, it optimizes image quality for quantitative analysis. Third, it is efficient for sequential/parallel computation. Furthermore, we analyze the reconstruction region and the detection window in detail, which are important for numerical implementation.

Paper Details

Date Published: 7 September 2006
PDF: 10 pages
Proc. SPIE 6318, Developments in X-Ray Tomography V, 63181M (7 September 2006); doi: 10.1117/12.678814
Show Author Affiliations
Kai Zeng, Univ. of Iowa (United States)
Hengyong Yu, Univ. of Iowa (United States)
Laurie L. Fajardo M.D., Univ. of Iowa (United States)
Ge Wang, Univ. of Iowa (United States)

Published in SPIE Proceedings Vol. 6318:
Developments in X-Ray Tomography V
Ulrich Bonse, Editor(s)

© SPIE. Terms of Use
Back to Top