Share Email Print
cover

Proceedings Paper

Simulation study on the influence of interface asymmetry on soft x-ray reflectivity of Mo/Si multilayers
Author(s): Junling Qin; Kui Yi; Jianda Shao; Zhengxiu Fan
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Mo/Si multilayers have been gaining industry interest as a promising choice for the next generation soft-x-ray projection lithography. Usually, an asymmetrical interlayer transition zones is formed in sputtered Mo/Si multilayers and Mo-on-Si interface is thicker than Si-on-Mo one. In order to study the influence of interface asymmetry on soft X-ray reflectivity of Mo/Si multilayers, a four-layer model is used to simulate soft X-ray reflectivity of Mo/Si multilayers at a given wavelength. The simulation study shows that interface asymmetry is not always disadvantageous to reflectivity of Mo/Si multilayers. When the sum of thickness of Mo-on-Si interface and Si-on-Mo interface is fixed, soft X-ray reflectivity of multilayers can be improved through increasing the thickness ratio of Mo-on-Si interface to Si-on-Mo interface. As the thickness of Si-on-Mo interface is fixed, only by increasing the thickness of of Mo-on-Si interface, soft X-ray reflectivity of multilayers can be improved. While the thickness of Mo-on-Si interface is fixed, only by increasing the thickness of Si-on-Mo interface, soft X-ray reflectivity of multilayers can be basically invariable.

Paper Details

Date Published: 9 June 2006
PDF: 6 pages
Proc. SPIE 6149, 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies, 61491N (9 June 2006); doi: 10.1117/12.674249
Show Author Affiliations
Junling Qin, Shanghai Institute of Optics and Fine Mechanics (China)
Graduate School of the Chinese Academy of Sciences (China)
Kui Yi, Shanghai Institute of Optics and Fine Mechanics (China)
Jianda Shao, Shanghai Institute of Optics and Fine Mechanics (China)
Zhengxiu Fan, Shanghai Institute of Optics and Fine Mechanics (China)


Published in SPIE Proceedings Vol. 6149:
2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Advanced Optical Manufacturing Technologies
Li Yang; Shangming Wen; Yaolong Chen; Ernst-Bernhard Kley, Editor(s)

© SPIE. Terms of Use
Back to Top