Share Email Print
cover

Proceedings Paper

Development of NIR detectors and science-driven requirements for SNAP
Author(s): M. G. Brown; C. Bebek; G. Bernstein; A. Bonissent; B. Carithers; D. Cole; D. Figer; D. Gerdes; L. Gladney; W. Lorenzon; A. Kim; G. Kushner; N. Kuznetsova; M. Lampton; M. Levi; E. Linder; S. McKee; R. Miquel; N. Mostek; S. Mufson; S. Perlmutter; M. Schubnell; S. Seshadri; H. Shukla; R. Smith; A. Stebbins; C. Stoughton; G. Tarlé
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Precision near infrared (NIR) measurements are essential for the next generation of ground and space based instruments. The SuperNova Acceleration Probe (SNAP) will measure thousands of type Ia supernovae up to a redshift of 1.7. The highest redshift supernovae provide the most leverage for determining cosmological parameters, in particular the dark energy equation of state and its possible time evolution. Accurate NIR observations are needed to utilize the full potential of the highest redshift supernovae. Technological improvements in NIR detector fabrication have lead to high quantum efficiency, low noise detectors using a HgCdTe diode with a band-gap that is tuned to cutoff at 1.7 μm. The effects of detector quantum efficiency, read noise, and dark current on lightcurve signal to noise, lightcurve parameter errors, and distance modulus fits are simulated in the SNAPsim framework. Results show that improving quantum efficiency leads to the largest gains in photometric accuracy for type Ia supernovae. High quantum efficiency in the NIR reduces statistical errors and helps control systematic uncertainties at the levels necessary to achieve the primary SNAP science goals.

Paper Details

Date Published: 5 July 2006
PDF: 12 pages
Proc. SPIE 6265, Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, 626535 (5 July 2006); doi: 10.1117/12.672141
Show Author Affiliations
M. G. Brown, Univ. of Michigan (United States)
C. Bebek, Lawrence Berkeley National Lab. (United States)
G. Bernstein, Univ. of Pennsylvania (United States)
A. Bonissent, CNRS/IN2P3/CPPM (France)
B. Carithers, Lawrence Berkeley National Lab. (United States)
D. Cole, Jet Propulsion Lab. (United States)
D. Figer, Space Telescope Science Institute (United States)
D. Gerdes, Univ. of Michigan (United States)
L. Gladney, Univ. of Pennsylvania (United States)
W. Lorenzon, Univ. of Michigan (United States)
A. Kim, Lawrence Berkeley National Lab. (United States)
G. Kushner, Lawrence Berkeley National Lab. (United States)
N. Kuznetsova, Lawrence Berkeley National Lab. (United States)
M. Lampton, Lawrence Berkeley National Lab. (United States)
M. Levi, Lawrence Berkeley National Lab. (United States)
E. Linder, Lawrence Berkeley National Lab. (United States)
S. McKee, Univ. of Michigan (United States)
R. Miquel, Lawrence Berkeley National Lab. (United States)
N. Mostek, Indiana Univ. (United States)
S. Mufson, Indiana Univ. (United States)
S. Perlmutter, Lawrence Berkeley National Lab. (United States)
M. Schubnell, Univ. of Michigan (United States)
S. Seshadri, Jet Propulsion Lab. (United States)
H. Shukla, Lawrence Berkeley National Lab. (United States)
R. Smith, California Institute of Technology (United States)
A. Stebbins, Fermi National Accelerator Lab. (United States)
C. Stoughton, Fermi National Accelerator Lab. (United States)
G. Tarlé, Univ. of Michigan (United States)


Published in SPIE Proceedings Vol. 6265:
Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter
John C. Mather; Howard A. MacEwen; Mattheus W. M. de Graauw, Editor(s)

© SPIE. Terms of Use
Back to Top