Share Email Print
cover

Proceedings Paper

Analysis of microroughness evolution in x-ray astronomical multilayer mirrors by surface topography with the MPES program and by x-ray scattering
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Future hard X-ray telescopes (e.g. SIMBOL-X and Constellation-X) will make use of hard X-ray optics with multilayer coatings, with angular resolutions comparable to the achieved ones in the soft X-rays. One of the crucial points in X-ray optics, indeed, is multilayer interfacial microroughness that causes effective area reduction and X-Ray Scattering (XRS). The latter, in particular, is responsible for image quality degradation. Interfacial smoothness deterioration in multilayer deposition processes is commonly observed as a result of substrate profile replication and intrinsic random deposition noise. For this reason, roughness growth should be carefully investigated by surface topographic analysis, X-ray reflectivity and XRS measurements. It is convenient to express the roughness evolution in terms of interface Power Spectral Densities (PSD), that are directly related to XRS and, in turn, in affecting the optic HEW (Half Energy Width). In order to interpret roughness amplification and to help us to predict the imaging performance of hard X-ray optics, we have implemented a well known kinetic continuum equation model in a IDL language program (MPES, Multilayer PSDs Evolution Simulator), allowing us the determination of characteristic growth parameters in multilayer coatings. In this paper we present some results from analysis we performed on several samples coated with hard X-ray multilayers (W/Si, Pt/C, Mo/Si) using different deposition techniques. We show also the XRS predictions resulting from the obtained modelizations, in comparison to the experimental XRS measurements performed at the energy of 8.05 keV.

Paper Details

Date Published: 13 June 2006
PDF: 14 pages
Proc. SPIE 6266, Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray, 626613 (13 June 2006); doi: 10.1117/12.671861
Show Author Affiliations
R. Canestrari, INAF/Osservatorio Astronomico di Brera (Italy)
D. Spiga, INAF/Osservatorio Astronomico di Brera (Italy)
G. Pareschi, INAF/Osservatorio Astronomico di Brera (Italy)


Published in SPIE Proceedings Vol. 6266:
Space Telescopes and Instrumentation II: Ultraviolet to Gamma Ray
Martin J. L. Turner; Günther Hasinger, Editor(s)

© SPIE. Terms of Use
Back to Top