Share Email Print
cover

Proceedings Paper

RHINO: real-time histogram interpretation of numerical observations
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

RHINO, Real-time Histogram Interpretation of Numerical Observations, is a specialty algorithm and tool under development for the United States Air Force Office of Scientific Research (AFOSR). The intent is to provide real-time feedback for adaptive control of telescope pointing for ground-space-ground laser illumination experiments. Nukove together with New Mexico State University first established a proof-of-principle laboratory experiment using RHINO and, under a controlled environment, reduction of the pointing error known as boresight was demonstrated. RHINO is resilient to effects such as glints, speckle, and scintillation. The forthcoming commercially available version of RHINO will use real-time field data and provide adaptive control to the user. The utility of RHINO is evident in a realistic scenario: Consider a space asset that has been joined by a microsat, perhaps 0.5m in size. The microsat may have been launched to simply listen in from close proximity, monitor the asset, image the asset or most critically, cause damage to the asset. If the goal is to destroy the microsat by long-range illumination with a high power laser and the microsat is meters from the asset (μrads at 1Mm) laser pointing is of utmost importance as the goal is certainly not to damage the space asset. RHINO offers the capability to estimate key metrics of laser system pointing, known as jitter and boresight. The algorithms used have been under development for nearly a decade, have been established in a laboratory environment, and have been tested with field data.

Paper Details

Date Published: 7 June 2006
PDF: 10 pages
Proc. SPIE 6261, High-Power Laser Ablation VI, 62612E (7 June 2006); doi: 10.1117/12.668488
Show Author Affiliations
Susan Chandler, Nukove Scientific Consulting (United States)
Gordon Lukesh, Nukove Scientific Consulting (United States)


Published in SPIE Proceedings Vol. 6261:
High-Power Laser Ablation VI
Claude R. Phipps, Editor(s)

© SPIE. Terms of Use
Back to Top