Share Email Print
cover

Proceedings Paper

A novel image fusion algorithm based on human vision system
Author(s): Qiguang Miao; Baoshu Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The proposed new fusion algorithm is based on the improved pulse coupled neural network(PCNN) model, the fundamental characteristics of images and the properties of human vision system. Compared with the traditional algorithm where the linking strength of each neuron is the same and its value is chosen through experimentation, this algorithm uses the contrast of each pixel as its value, so that the linking strength of each pixel can be chosen adaptively. After the processing of PCNN with the adaptive linking strength, new fire mapping images are obtained for each image taking part in the fusion. The clear objects of each original image are decided by the compare-selection operator with the fire mapping images pixel by pixel and then all of them are merged into a new clear image. Furthermore, by this algorithm, other parameters, for example, Δ, the threshold adjusting constant, only have a slight effect on the new fused image. It therefore overcomes the difficulty in adjusting parameters in PCNN. Experiments show that the proposed algorithm works better in preserving the edge and texture information than the wavelet transform method and the Laplacian pyramid method do image fusion.

Paper Details

Date Published: 18 April 2006
PDF: 8 pages
Proc. SPIE 6242, Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2006, 62420X (18 April 2006); doi: 10.1117/12.668003
Show Author Affiliations
Qiguang Miao, Xidian Univ. (China)
Guilin Univ. of Electronic Technology (China)
Baoshu Wang, Xidian Univ. (China)


Published in SPIE Proceedings Vol. 6242:
Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2006
Belur V. Dasarathy, Editor(s)

© SPIE. Terms of Use
Back to Top