Share Email Print

Proceedings Paper

Analog compound orthogonal neural network control of robotic manipulators
Author(s): Ye Jun
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An analog compound orthogonal neural network is presented which is based on digital compound orthogonal neural networks. The compound neural network's control performance was investigated as applied to a robot control problem. The analog neural network is a Chebyshev neural network with a high speed-learning rate in an on-line manner. Its control algorithm does not relate to controlled plant models. The analog neural network is used as the feedforward controller, and PD is used as the feedback controller in the control system of robots. The excellent performance in system response, tracking accuracy, and robustness was verified through a simulation experiment applied to a robotic manipulator with friction and nonlinear disturbances. The trajectory tracking control showed results in satisfactory effectiveness. This analog neural controller provides a novel approach for the control of uncertain or unknown systems.

Paper Details

Date Published: 2 May 2006
PDF: 6 pages
Proc. SPIE 6042, ICMIT 2005: Control Systems and Robotics, 60422L (2 May 2006); doi: 10.1117/12.664667
Show Author Affiliations
Ye Jun, Shaoxing College of Arts and Sciences (China)

Published in SPIE Proceedings Vol. 6042:
ICMIT 2005: Control Systems and Robotics
Yunlong Wei; Kil To Chong; Takayuki Takahashi; Shengping Liu; Zushu Li; Zhongwei Jiang; Jin Young Choi, Editor(s)

© SPIE. Terms of Use
Back to Top