Share Email Print
cover

Proceedings Paper

The development of a UGV-mounted automated refueling system for VTOL UAVs
Author(s): Mike Wills; Aaron Burmeister; Travis Nelson; Thomas Denewiler; Kathy Mullens
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper describes the latest efforts to develop an Automated UAV Mission System (AUMS) for small vertical takeoff and landing (VTOL) unmanned air vehicles (UAVs). In certain applications such as force protection, perimeter security, and urban surveillance a VTOL UAV can provide far greater utility than fixed-wing UAVs or ground-based sensors. The VTOL UAV can operate much closer to an object of interest and can provide a hover-and-stare capability to keep its sensors trained on an object, while the fixed wing UAV would be forced into a higher altitude loitering pattern where its sensors would be subject to intermittent blockage by obstacles and terrain. The most significant disadvantage of a VTOL UAV when compared to a fixed-wing UAV is its reduced flight endurance. AUMS addresses this disadvantage by providing forward staging, refueling, and recovery capabilities for the VTOL UAV through a host unmanned ground vehicle (UGV), which serves as a launch/recovery platform and service station. The UGV has sufficient payload capacity to carry UAV fuel for multiple launch, recovery, and refuel iterations. The UGV also provides a highly mobile means of forward deploying a small UAV into hazardous areas unsafe for personnel, such as chemically or biologically contaminated areas. Teaming small UAVs with large UGVs can decrease risk to personnel and expand mission capabilities and effectiveness. There are numerous technical challenges being addressed by these development efforts. Among the challenges is the development and integration of a precision landing system compact and light enough to allow it to be mounted on a small VTOL UAV while providing repeatable landing accuracy to safely land on the AUMS. Another challenge is the design of a UGV-transportable, expandable, self-centering landing pad that contains hardware and safety devices for automatically refueling the UAV. A third challenge is making the design flexible enough to accommodate different types of VTOL UAVs, such as the AAI iSTAR ducted-fan vehicle and small helicopter UAVs. Finally, a common command-and-control architecture which supports the UAV, UGV, and AUMS must be developed and interfaced with these systems to allow fully autonomous collaborative behaviors. Funded by the Joint Robotics Program, AUMS is part of a joint effort with the Air Force Research Laboratory and the Army Missile Research Development and Engineering Command. The objective is to develop and demonstrate UGVUAV teaming concepts and work with the warfighter to ensure that future upgrades are focused on operational requirements. This paper describes the latest achievements in AUMS development and some of the military program and first responder situations that could benefit from this system.

Paper Details

Date Published: 12 May 2006
PDF: 12 pages
Proc. SPIE 6230, Unmanned Systems Technology VIII, 62302G (12 May 2006); doi: 10.1117/12.664207
Show Author Affiliations
Mike Wills, Space and Naval Warfare Systems Ctr., San Diego (United States)
Aaron Burmeister, Space and Naval Warfare Systems Ctr., San Diego (United States)
Travis Nelson, Space and Naval Warfare Systems Ctr., San Diego (United States)
Thomas Denewiler, Science Applications International Corp. (United States)
Kathy Mullens, Space and Naval Warfare Systems Ctr., San Diego (United States)


Published in SPIE Proceedings Vol. 6230:
Unmanned Systems Technology VIII
Grant R. Gerhart; Charles M. Shoemaker; Douglas W. Gage, Editor(s)

© SPIE. Terms of Use
Back to Top