Share Email Print
cover

Proceedings Paper

Compact photonic devices based on 1D and 2D photonic crystal broadband reflectors
Author(s): S. Boutami; B. Ben Bakir; J.-L. Leclercq; X. Letartre; P. Rojo-romeo; M. Garrigues; C. Seassal; P. Viktorovitch; M. Strassner; L. Le Gratiet; K. Merghem; I. Sagnes
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

1D and 2D compact photonic crystal reflectors on suspended InP membranes are theoretically and experimentally studied under normal incidence. They are based on the coupling of free space waves with slow Bloch modes of the crystal. We first present monomodal 1D photonic crystal reflectors. Then, we focus on multimodal 1D reflectors, which involve two slow Bloch modes of the crystal, and thus present broadband high-efficiency characteristics. 2D broadband reflectors were also investigated. They allow for an accurate control on the polarization dependence of the reflection. A compact (50 μm x 50 μm) demonstrator was realized and characterized, behaving either as a broadband reflector or as a broadband transmitter, depending on the polarization of the incident wave (experimental stop-band superior to 200nm, theoretical stop-band of 350nm). These photonic crystal slabs can be used in new photonic devices as reflectors, where they can replace multilayer Bragg mirrors. The authors report a compact and highly selective tunable filter using a Fabry-Perot resonator combining a bottom micromachined 3-pair-InP/air-gap Bragg reflector with a top photonic crystal slab mirror. It is based on the coupling between radiated vertical cavity modes and waveguided modes of the photonic crystal. The full-width at half maximum (FWHM) of the resonance, as measured by microreflectivity experiments, is close to 1.5nm (around 1.55 μm). The presence of the photonic crystal slab mirror results in a very compact resonator, with a limited number of layers. The demonstrator was tuned over a 20nm range for a 4V tuning voltage, the FWHM being kept below 2.5nm.

Paper Details

Date Published: 18 April 2006
PDF: 12 pages
Proc. SPIE 6182, Photonic Crystal Materials and Devices III (i.e. V), 61821O (18 April 2006); doi: 10.1117/12.662843
Show Author Affiliations
S. Boutami, Lab. d’Electronique, Optoélectronique et Microsystèmes, CNRS, École Centrale de Lyon (France)
B. Ben Bakir, Lab. d’Electronique, Optoélectronique et Microsystèmes, CNRS, École Centrale de Lyon (France)
J.-L. Leclercq, Lab. d’Electronique, Optoélectronique et Microsystèmes, CNRS, École Centrale de Lyon (France)
X. Letartre, Lab. d’Electronique, Optoélectronique et Microsystèmes, CNRS, École Centrale de Lyon (France)
P. Rojo-romeo, Lab. d’Electronique, Optoélectronique et Microsystèmes, CNRS, École Centrale de Lyon (France)
M. Garrigues, Lab. d’Electronique, Optoélectronique et Microsystèmes, CNRS, École Centrale de Lyon (France)
C. Seassal, Lab. d’Electronique, Optoélectronique et Microsystèmes, CNRS, École Centrale de Lyon (France)
P. Viktorovitch, Lab. d’Electronique, Optoélectronique et Microsystèmes, CNRS, École Centrale de Lyon (France)
M. Strassner, Lab. de Photonique et des Nanostructures, CNRS (France)
L. Le Gratiet, Lab. de Photonique et des Nanostructures, CNRS (France)
K. Merghem, Lab. de Photonique et des Nanostructures, CNRS (France)
I. Sagnes, Lab. de Photonique et des Nanostructures, CNRS (France)


Published in SPIE Proceedings Vol. 6182:
Photonic Crystal Materials and Devices III (i.e. V)
Richard M. De La Rue; Pierre Viktorovitch; Ceferino Lopez; Michele Midrio, Editor(s)

© SPIE. Terms of Use
Back to Top