Share Email Print

Proceedings Paper

Synthesis of photobleachable deep UV resists based on single component nonchemically amplified resist system
Author(s): Kyoung-Seon Kim; Su-Min Kim; Ji-Young Park; Jin-Baek Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In a general way, non-CARs consist of the matrix resins and photoactive compounds (PACs), and the dissolution properties of the resists are dependent on the amount of PACs. In common, I-line and G-line resists based on novolac and diazonaphthoquinone (DNQ) are typical non-CARs. But most PACs absorb much light in the deep UV, and they are poorly photobleached by deep UV exposure. This strong absorption of PACs prevents the deep UV light from reaching the bottom of the resist film, leading to scum and sloped pattern profiles. Several PACs which contain diazoketo groups have been reported for deep UV lithography. Our goal in this investigation is to find a proper resist that is processable without photoacid generator and induces both photobleaching in the deep UV regions and polarity change upon exposure. We thought diazoketo groups attached to the polymer side chains could give such effects. There is no necessity for the post-exposure bake step that is the cause of acid-diffusion. The diazoketo groups undergo the Wolff rearrangement upon irradiation in the deep UV, affording ketenes that react with water to provide base soluble photoproducts. The polymers were synthesized by radical copolymerization of 2-(2-diazo-3-oxo-butyryloxy)-ethyl methacrylate, 2-hydroxyethyl methacrylate, and γ-butyrolacton-2-yl methacrylate. The single component resist showed 0.7μm line and space patterns using a mercury-xenon lamp in a contact printing mode.

Paper Details

Date Published: 29 March 2006
PDF: 9 pages
Proc. SPIE 6153, Advances in Resist Technology and Processing XXIII, 61532H (29 March 2006); doi: 10.1117/12.660634
Show Author Affiliations
Kyoung-Seon Kim, Korea Advanced Institute of Science and Technology (South Korea)
Su-Min Kim, Korea Advanced Institute of Science and Technology (South Korea)
Ji-Young Park, Korea Advanced Institute of Science and Technology (South Korea)
Jin-Baek Kim, Korea Advanced Institute of Science and Technology (South Korea)

Published in SPIE Proceedings Vol. 6153:
Advances in Resist Technology and Processing XXIII
Qinghuang Lin, Editor(s)

© SPIE. Terms of Use
Back to Top