Share Email Print

Proceedings Paper

Technological assessment of sensing systems in propulsion systems in high temperature zones
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Presently there exists no way for direct measurement of strain at high temperature in engine components such as combustion chamber, exhaust nozzle, propellant lines and turbine blades and shaft. Existing fatigue and life prediction studies for high temperature zones in propulsion systems depend on strain/stress values computed from indirect measurements of temperature, flow velocity, pressure, et al. Thermomechanical fatigue (TMF) prediction, which is a critical element for blade design, is a strong function of the temperature and strain profiles. Major uncertainties arise from the inability of current instrumentation to measure temperature and strain at the critical locations. This prevents the structural designer from optimizing the blade design high temperature environment, which is a significant challenging problem in engine design. Ability to measure directly strains in different high temperature zones would deeply enhance the effectiveness of aircraft propulsion systems for fatigue damage assessment and life prediction. State of the art for harsh environment high temperature sensors has improved considerably for the past few years. This paper lays down specifications for high temperature sensors and does the technological assessment of these new sensing technologies. This paper presents a review of the recent advances made in harsh environment sensing systems and takes a peek at the future of such technologies.

Paper Details

Date Published: 30 March 2006
PDF: 8 pages
Proc. SPIE 6179, Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring II, 617908 (30 March 2006); doi: 10.1117/12.660549
Show Author Affiliations
Anindya Ghoshal, United Technologies Research Ctr. (United States)
Heung Soo Kim, Inha Univ. (South Korea)

Published in SPIE Proceedings Vol. 6179:
Advanced Sensor Technologies for Nondestructive Evaluation and Structural Health Monitoring II
Norbert Meyendorf; George Y. Baaklini; Bernd Michel, Editor(s)

© SPIE. Terms of Use
Back to Top