Share Email Print
cover

Proceedings Paper

Dimensional and material characteristics of direct deposited tool steel by CO2 laser
Author(s): J. Choi
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Laser aided direct metalimaterial deposition (DMD) process builds metallic parts layer-by-layer directly from the CAD representation. In general, the process uses powdered metaUmaterials fed into a melt pool, creating fully dense parts. Success of this technology in the die and tool industry depends on the parts quality to be achieved. To obtain designed geometric dimensions and material properties, delicate control of the parameters such as laser power, spot diameter, traverse speed and powder mass flow rate is critical. In this paper, the dimensional and material characteristics of directed deposited H13 tool steel by CO2 laser are investigated for the DMD process with a feedback height control system. The relationships between DMD process variables and the product characteristics are analyzed using statistical techniques. The performance of the DMD process is examined with the material characteristics of hardness, porosity, microstructure, and composition.

Paper Details

Date Published: 9 June 2006
PDF: 14 pages
Proc. SPIE 6053, International Conference on Lasers, Applications, and Technologies 2005: High-Power Lasers and Applications, 60530N (9 June 2006); doi: 10.1117/12.660326
Show Author Affiliations
J. Choi, Univ. of Missouri, Rolla (United States)


Published in SPIE Proceedings Vol. 6053:
International Conference on Lasers, Applications, and Technologies 2005: High-Power Lasers and Applications
Willy L. Bohn; Vladimir S. Golubev; Andrey A. Ionin; Vladislav Ya. Panchenko, Editor(s)

© SPIE. Terms of Use
Back to Top