Share Email Print
cover

Proceedings Paper

Self-powered sensory nerve system for civil structures using hybrid forisome actuators
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In order to provide a true distributed sensor and control system for civil structures, we have developed a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently discovered plant-protein forisomes, a novel non-living biological material capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using forisomes as the mechanoreceptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper will present up to date results of our research, including the design and analysis of the structural nervous system.

Paper Details

Date Published: 11 April 2006
PDF: 10 pages
Proc. SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 617438 (11 April 2006); doi: 10.1117/12.660203
Show Author Affiliations
Rahmat A. Shoureshi, Univ. of Denver (United States)
Amy Shen, Washington Univ. (United States)


Published in SPIE Proceedings Vol. 6174:
Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Masayoshi Tomizuka; Chung-Bang Yun; Victor Giurgiutiu, Editor(s)

© SPIE. Terms of Use
Back to Top