Share Email Print
cover

Proceedings Paper

Receiver structures for underwater acoustical communications using chirp slope keying
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

This paper presents several receiver structures for Chirp Slope Keying (CSK), a digital broadband modulation scheme we propose to use for underwater acoustical communications. In its simplest form, the binary information modulates the slope of a linear chirp, with up-chirps representing ones and down-chirps representing zeros. A time-domain receiver and a novel time-frequency receiver structure based on the Wigner distribution and the Radon Transform are discussed and evaluated in terms of the probability of error versus Signal-to-Noise (SNR) performance. Simulation results and plots are presented for the Additive White Gaussian Noise (AWGN) channel. Results show that if the detector at the receiver operates directly on the slope of the received signal, performance is improved at the expense of computational complexity.

Paper Details

Date Published: 10 May 2006
PDF: 12 pages
Proc. SPIE 6201, Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense V, 620110 (10 May 2006); doi: 10.1117/12.659899
Show Author Affiliations
Edit J. Kaminsky, Univ. of New Orleans (United States)
Madalina Barbu, Univ. of New Orleans (United States)


Published in SPIE Proceedings Vol. 6201:
Sensors, and Command, Control, Communications, and Intelligence (C3I) Technologies for Homeland Security and Homeland Defense V
Edward M. Carapezza, Editor(s)

© SPIE. Terms of Use
Back to Top