Share Email Print
cover

Proceedings Paper

Active chaotic excitation for bolted joint monitoring
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Recent research has shown that high frequency chaotic excitation and state space reconstruction may be used to identify incipient damage (loss of preload) in a bolted joint. In this study, a new experiment is undertaken with updated test equipment, including a piezostack actuator that allows for precise control of bolt preload. The excitation waveform is applied to a macro-fiber composite (MFC) patch that is bonded to the test structure and is sensed in an active manner using a second MFC patch. A novel prediction error algorithm, based on comparing filtered properties of the guided chaotic waves, is used to determine the damage state of a frame structure and is shown to be highly sensitive to small levels of bolt preload loss. The performance of the prediction error method is compared with standard structural health monitoring damage features that are based on time series analysis using auto-regressive (AR) models.

Paper Details

Date Published: 11 April 2006
PDF: 8 pages
Proc. SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 61741S (11 April 2006); doi: 10.1117/12.658819
Show Author Affiliations
Timothy R. Fasel, Univ. of California, San Diego (United States)
Michael D. Todd, Univ. of California, San Diego (United States)
Gyuhae Park, Los Alamos National Lab. (United States)


Published in SPIE Proceedings Vol. 6174:
Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Masayoshi Tomizuka; Chung-Bang Yun; Victor Giurgiutiu, Editor(s)

© SPIE. Terms of Use
Back to Top