Share Email Print

Proceedings Paper

Dynamic modeling of the nonlinear response of ionic polymer actuators
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Ionic polymers are compliant, light weight materials that operate under low voltage levels as transducers. They can be used as both sensors and actuators for various applications, primarily those involving flexible structures. The electromechanical transduction properties of these materials were discovered just over a decade ago, spawning the development of ionic polymer research. While the debate continues over the dominant physical mechanisms of actuation, several model forms have been proposed. The majority of these existing models are stated to be linear approximations and some were derived with input-dependence. However, nonlinear characteristics have been observed in both the electrical and mechanical response of cantilever actuators, including harmonic distortion in the time-domain and magnitude scaling of the frequency response. Characterization results indicate that the nonlinear mechanisms are dynamic since they have dominance at low frequencies, but are essentially negligible as the excitation frequency increases. This research uses knowledge gained from the characterization results to develop a dynamic model that can predict the observed nonlinear behavior. The empirical model is constructed from input-output data collected using a Gaussian input current signal and is validated using the measured frequency response function and single-frequency sinusoidal responses.

Paper Details

Date Published: 27 March 2006
PDF: 12 pages
Proc. SPIE 6166, Smart Structures and Materials 2006: Modeling, Signal Processing, and Control, 61660K (27 March 2006); doi: 10.1117/12.658587
Show Author Affiliations
Curt S. Kothera, Virginia Tech (United States)
Donald J. Leo, Virginia Tech (United States)

Published in SPIE Proceedings Vol. 6166:
Smart Structures and Materials 2006: Modeling, Signal Processing, and Control
Douglas K. Lindner, Editor(s)

© SPIE. Terms of Use
Back to Top