Share Email Print
cover

Proceedings Paper

Amplification in hollow core photonic crystal fibers
Author(s): P. J. Roberts; J. Broeng; Anders Petersson; K. P. Hansen
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Hollow core photonic crystal fiber (HCPCF) amplifiers, in which Er3+- or Yb3+- doped glass acts as the gain medium, are proposed as a means of achieving high power pulse amplification. Double-clad configurations are identified which capture multimode pump light up to an NA of around 0.33. The nonlinear and breakdown properties of a HC-PCF amplifier with a mode area of approximately 50μm2 are predicted to be comparable to those of a solid core fiber amplifier with a mode area of 1000μm2. Mode competition effects within the HC-PCF amplifier strongly degrade the output signal unless the net gains of the unwanted guided modes are below that of the signal mode. This can be achieved if the ratio of amplifier gain to scattering loss is larger for the signal mode than any of the undesired guided modes. Assuming loss is dominated by hole interface roughness scattering, and an even doping profile produces the gain, the ratios for the unwanted guided modes of a typical HCPCF geometry are calculated to be similar to that for the signal carrying mode. The mode competition also places a lower bound on the active fiber length, typically implying a longer length is required than in a solid core fiber amplifier. This adversely affects the device efficiency due to scattering loss of the pump field incurred at the air/glass interfaces. To achieve a clean mode output and acceptable efficiency, alternative designs for the HC-PCF will need to be developed.

Paper Details

Date Published: 23 February 2006
PDF: 11 pages
Proc. SPIE 6102, Fiber Lasers III: Technology, Systems, and Applications, 61020F (23 February 2006); doi: 10.1117/12.658545
Show Author Affiliations
P. J. Roberts, Technical Univ. of Denmark (Denmark)
Crystal Fibre A/S (Denmark)
J. Broeng, Crystal Fibre A/S (Denmark)
Anders Petersson, Crystal Fibre A/S (Denmark)
K. P. Hansen, Crystal Fibre A/S (Denmark)


Published in SPIE Proceedings Vol. 6102:
Fiber Lasers III: Technology, Systems, and Applications
Andrew J. W. Brown; Johan Nilsson; Donald J. Harter; Andreas Tünnermann, Editor(s)

© SPIE. Terms of Use
Back to Top