Share Email Print
cover

Proceedings Paper

Fabrication methods of micrometallic closed cellular materials
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A method to fabricate the metallic closed cellular material has been developed. Powder particles of polymer coated with a nickel-phosphorus alloy layer using electro-less plating were pressed into pellets and sintered at high temperatures by a furnace and a spark plasma sintering (SPS) system. A metallic closed cellular material containing different materials from that of cell walls was then fabricated. The mechanical properties of this material were measured. The results of the compressive tests show that this material has the different stress-strain curves among the specimens that have different thickness of the cell walls and the sintering temperatures of the specimens affect the compressive strength of each specimen. Also, it seems that the results of the compressive tests show that this material has high-energy absorption and Young's modulus of this material depends on the thickness of the cell walls and the sintering temperature. These obtained results emphasize that this material can be utilized as energy absorbing material and passive damping material.

Paper Details

Date Published: 31 March 2006
PDF: 8 pages
Proc. SPIE 6172, Smart Structures and Materials 2006: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, 617216 (31 March 2006); doi: 10.1117/12.658483
Show Author Affiliations
Satoshi Kishimoto, National Institute for Materials Science (Japan)
Norio Shinya, National Institute for Materials Science (Japan)


Published in SPIE Proceedings Vol. 6172:
Smart Structures and Materials 2006: Smart Electronics, MEMS, BioMEMS, and Nanotechnology
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top