Share Email Print

Proceedings Paper

Development of active CFRP/metal laminates and their demonstrations in complicated forms
Author(s): H. Asanuma; T. Nakata; T. Tanaka; M. Imori; O. Haga
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper describes development of high performance CFRP/metal active laminates and demonstrations of them in complicated forms. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature. The aluminum type active laminate was made into complicated forms, that is, a hatch, a stack, a coil and a lift types, and their actuation performances were successfully demonstrated.

Paper Details

Date Published: 5 April 2006
PDF: 10 pages
Proc. SPIE 6173, Smart Structures and Materials 2006: Smart Structures and Integrated Systems, 61731Q (5 April 2006); doi: 10.1117/12.658461
Show Author Affiliations
H. Asanuma, Chiba Univ. (Japan)
T. Nakata, Chiba Univ. (Japan)
T. Tanaka, Chiba Univ. (Japan)
M. Imori, Chiba Univ. (Japan)
O. Haga, Chiba Univ. (Japan)

Published in SPIE Proceedings Vol. 6173:
Smart Structures and Materials 2006: Smart Structures and Integrated Systems
Yuji Matsuzaki, Editor(s)

© SPIE. Terms of Use
Back to Top