Share Email Print
cover

Proceedings Paper

Piezoresistive feedback for improving transient response of MEMS thermal actuators
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We examine exploiting the inherent piezoresistivity of a polysilicon compliant mechanism to provide feedback sensing of the mechanism displacement. As the piezoresistive compliant mechanism deflects to produce motion its resistance changes producing a usable signal. The goal of this work is to improve the transient response of a thermal actuator through piezoresistive feedback control. Implementing feedback control significantly improves the actuators transient response. The actuator response time to step inputs is reduced from 800μs to 230μs with proportional control alone. The system bandwidth was increased from 500~Hz to 4~kHz with proportional control. The large overshoot in the step response or the resonant peak in the frequency response can be reduce by an appropriately tuned 2~kHz notch prefilter.

Paper Details

Date Published: 5 April 2006
PDF: 12 pages
Proc. SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 617408 (5 April 2006); doi: 10.1117/12.657954
Show Author Affiliations
Rob K. Messenger, Brigham Young Univ. (United States)
Timothy W. McLain, Brigham Young Univ. (United States)
Larry L. Howell, Brigham Young Univ. (United States)


Published in SPIE Proceedings Vol. 6174:
Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Masayoshi Tomizuka; Chung-Bang Yun; Victor Giurgiutiu, Editor(s)

© SPIE. Terms of Use
Back to Top