Share Email Print
cover

Proceedings Paper

Characterization and dynamic modeling of ionic polymer-metal composites (IPMC): artificial muscles
Author(s): Ashwin Mudigonda; Jianchao Zhu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This paper deals with the characterization and dynamic modeling of the behavior of two types of the Ionic Polymer Metal Composite (IPMC) "artificial muscle" materials. Environmental Robots, Inc. (ERI) was the initial vendor and its IPMC products required hydration for optimal performance. Virginia Polytechnic Institute and State University (Virginia Tech, VT) subsequently developed their innovative ionic solvent filled IPMCs that obviated hydration. Static tests were conducted to characterize force, displacement and current as a function of applied voltage. Dynamic tests were conducted to observe the frequency response of the material. Fatigue tests were performed on the ERI IPMCs to observe the change in behavior over time. It was found that the VT IPMCs had a bandwidth that was almost half that of the ERI product. However, the obviation of hydration of the VT's IPMC ensured the repeatability of performance and generated increased force densities. A feasibility study is presented to estimate the amount of IPMC materials and power consumption for a biceps exo-muscular assistance device based on the characteristics of the current IPMC materials and a primitive exo-muscular fiber bundle structure.

Paper Details

Date Published: 22 March 2006
PDF: 12 pages
Proc. SPIE 6168, Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), 616815 (22 March 2006); doi: 10.1117/12.657391
Show Author Affiliations
Ashwin Mudigonda, Orbital Research, Inc. (United States)
Jianchao Zhu, Ohio Univ. (United States)


Published in SPIE Proceedings Vol. 6168:
Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD)
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top