Share Email Print
cover

Proceedings Paper

High-performance imprint lithography and novel metrology methods using multifunctional perfluoropolyethers
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We describe the use of multifunctional perfluoropolyethers as enabling materials in imprint lithography and metrology. Perfluoropolyethers (PFPEs) are a unique class of fluoropolymers that are liquids at room temperature that can be functionalized and cured to form transparent "PTFE-like" elastomers. These materials posses many favorable attributes relative to imprint lithography and other soft lithographic techniques including: chemical resistance, flexibility, incredibly low surface energies, high gas permeability, and UV transparency. Molds made from PFPE materials exhibit the favorable properties of both rigid and soft materials in that they are rapidly made and disposable, yet maintain the chemical resistance and performance of rigid materials such as quartz. We have previously demonstrated the use of such materials in patterning 70nm features with a precision of +/-1 nm. Herein, we further demonstrate the capability of these materials in the rapid patterning of dual damascene structures and other patterns. The chemical resistance of PFPE-based materials allows for the patterning of a variety of organic resins including etch resists, low-k dielectrics, and conducting polymers. Additionally, we demonstrate the utility of functional PFPEs in a novel metrology method. In this simple technique, the liquid PFPE precursor is poured onto a wafer with a given pattern and cured. When released from the wafer, the cured film possesses an exact negative replica of the original pattern. A variety of metrology and inspection methods can then be performed on the patterned, transparent film including microscopy and through-film optics which can reveal defects in the original pattern. Furthermore, the method is shown to be completely non-destructive to the original patterned wafer. We describe the use of this method in the metrology and inspection of a dual damascene pattern containing features which are difficult to characterize by other techniques.

Paper Details

Date Published: 24 March 2006
PDF: 8 pages
Proc. SPIE 6152, Metrology, Inspection, and Process Control for Microlithography XX, 61523F (24 March 2006); doi: 10.1117/12.656532
Show Author Affiliations
Ginger Denison Rothrock, Liquidia Technologies (United States)
Benjamin Maynor, Univ. of North Carolina (United States)
Jason P. Rolland, Liquidia Technologies (United States)
Joseph M. DeSimone, Univ. of North Carolina (United States)
North Carolina State Univ. (United States)


Published in SPIE Proceedings Vol. 6152:
Metrology, Inspection, and Process Control for Microlithography XX
Chas N. Archie, Editor(s)

© SPIE. Terms of Use
Back to Top