Share Email Print
cover

Proceedings Paper

Implications of MR contrast standardization on image computing
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The process of transforming the non-linear magnetic field perturbations induced by radiowaves into linear reconstructions based on Radon and Fourier transforms has resulted in MR acquisitions in which intensities do not have a fixed meaning, not even within the same protocol, for the same body region, for images obtained on the same scanner, for the same patient, on the same day. This makes robust image interpretation and processing extremely challenging. The status quo of fine tuning an image processing algorithm with the ever-varying MRI intensity space could best be summarized as a "random search through the parameter space". This work demonstrates the implications of standardizing the contrast across multiple tissue types on the robustness and efficiency of image processing algorithms. Contrast standardization is performed using a prior-knowledge driven feature-guided, fast, non-linear equalization technique. Without loss of generality, skull stripping and brain tissue segmentation are considered in this investigation. Results show that the iterative image processing algorithms converge faster with minimal parameter tweaking and the abstractions are significantly better in the contrast standardized space than in the native stochastic space.

Paper Details

Date Published: 20 March 2006
PDF: 8 pages
Proc. SPIE 6144, Medical Imaging 2006: Image Processing, 61446L (20 March 2006); doi: 10.1117/12.653959
Show Author Affiliations
Srinivasan Rajagopalan, Mayo Clinic College of Medicine (United States)
Richard A. Robb, Mayo Clinic College of Medicine (United States)


Published in SPIE Proceedings Vol. 6144:
Medical Imaging 2006: Image Processing
Joseph M. Reinhardt; Josien P. W. Pluim, Editor(s)

© SPIE. Terms of Use
Back to Top