Share Email Print
cover

Proceedings Paper

A fast algorithm for body extraction in CT volumes
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Computed Tomography (CT) modality shows not only the body of the patient in the volumes it generates, but also the clothing, the cushion and the table. This might be a problem especially for two applications. The first is 3D visualization, where the table has high density parts that might hide regions of interest. The second is registration of acquisitions obtained at different time points; indeed, the table and cushions might be visible in one data set only, and their positions and shapes may vary, making the registration less accurate. An automatic approach for extracting the body would solve those problems. It should be robust, reliable, and fast. We therefore propose a multi-scale method based on deformable models. The idea is to move a surface across the image that attaches to the boundaries of the body. We iteratively compute forces which take into account local information around the surface. Those make it move through the table but ensure that it stops when coming close to the body. Our model has elastic properties; moreover, we take into account the fact that some regions in the volume convey more information than others by giving them more weight. This is done by using normalized convolution when regularizing the surface. The algorithm*, tested on a database of over a hundred volumes of whole body, chest or lower abdomen, has proven to be very efficient, even for volumes with up to 900 slices, providing accurate results in an average time of 6 seconds. It is also robust against noise and variations of scale and table's shape.

Paper Details

Date Published: 15 March 2006
PDF: 9 pages
Proc. SPIE 6144, Medical Imaging 2006: Image Processing, 61444C (15 March 2006); doi: 10.1117/12.653847
Show Author Affiliations
Grégoire Guétat, Siemens Medical Solutions USA (United States)
Jonathan Stoeckel, Siemens Medical Solutions USA (United States)
Matthias Wolf, Siemens Medical Solutions USA (United States)
Arun Krishnan, Siemens Medical Solutions USA (United States)


Published in SPIE Proceedings Vol. 6144:
Medical Imaging 2006: Image Processing
Joseph M. Reinhardt; Josien P. W. Pluim, Editor(s)

© SPIE. Terms of Use
Back to Top