Share Email Print
cover

Proceedings Paper

Structural tests using a MEMS acoustic emission sensor
Author(s): Irving J. Oppenheim; David W. Greve; Didem Ozevin; D. Robert Hay; Thomas R. Hay; Stephen P. Pessiki; Nathan L. Tyson
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained from the MEMS transducers paralleled the count obtained from the commercial transducer. Waveform analysis of signals from the MEMS transducers provided additional information concerning arrivals of P-waves and S-waves. Similarly, the analysis provided additional confirmation that the acoustic emissions emanated from the damage zone near the crack tip, and were not spurious signals or artifacts. Subsequent tests were conducted in a field application where the MEMS transducers were redundant to a group of commercial transducers. The application example is a connection plate in truss bridge construction under passage of heavy traffic loads. The MEMS transducers were found to be functional, but were less sensitive in their present form than existing commercial transducers. We conclude that the transducers are usable in their current configuration and we outline applications for which they are presently suited, and then we discuss alternate MEMS structures that would provide greater sensitivity.

Paper Details

Date Published: 5 April 2006
PDF: 10 pages
Proc. SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 617404 (5 April 2006); doi: 10.1117/12.648676
Show Author Affiliations
Irving J. Oppenheim, Carnegie Mellon Univ. (United States)
David W. Greve, Carnegie Mellon Univ. (United States)
Didem Ozevin, Physical Acoustics Corp. (United States)
Lehigh Univ. (United States)
D. Robert Hay, TISEC Inc. (Canada)
Thomas R. Hay, WavesInSolids LLC (United States)
Stephen P. Pessiki, Lehigh Univ. (United States)
Nathan L. Tyson, Carnegie Mellon Univ. (United States)


Published in SPIE Proceedings Vol. 6174:
Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Masayoshi Tomizuka; Chung-Bang Yun; Victor Giurgiutiu, Editor(s)

© SPIE. Terms of Use
Back to Top