Share Email Print

Proceedings Paper

Numerical band calculation of holographically formed periodic structures with irregular motif
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Recently, two-dimensional and three-dimensional periodic dielectric structures have been directly fabricated by laser holographic lithography (HL) to create novel geometric structures with high-precision tolerances. Multiple beam interference via beam splitting mirrors or diffractive optical elements produce isointensity contours that can be accurately recorded in photoresist and subsequently used as a template for creating photonic crystals with a complete or partial bandgap. The periodic structures typically formed by HL comprise of highly convoluted contours that do not conform to typically known geometrical shapes and therefore preclude the use of analytic approaches such as the plane wave expansion (PWE) method to accurately generate the band-dispersion curves. In this paper, we present a numerical technique that decomposes the HL-formed structure into fine mesh grids and expands this material mesh into the PWE method to generate band-dispersion curves. Band diagrams obtained in this way are shown to accurately match the well known solutions for opal, inverted opal, and woodpile structures which have a regular motif. We extend the numerical technique to predict the band structure of HL templates which have an irregular motif and present band diagrams for structures formed by Ar-ion laser phasemask interference.

Paper Details

Date Published: 1 March 2006
PDF: 6 pages
Proc. SPIE 6128, Photonic Crystal Materials and Devices IV, 61281E (1 March 2006); doi: 10.1117/12.648519
Show Author Affiliations
Debashis Chanda, Univ. of Toronto (Canada)
Ladan Abolghasemi, Univ. of Toronto (Canada)
Peter R. Herman, Univ. of Toronto (Canada)

Published in SPIE Proceedings Vol. 6128:
Photonic Crystal Materials and Devices IV
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top