Share Email Print
cover

Proceedings Paper

Adiabatic Mode Transformation in Few Mode Index Guiding Holey Fiber with Ultra-Flattened Chromatic Dispersion
Author(s): Soan Kim; Kyunghwan Oh
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We propose new design parameters for few mode index-guiding holey-fiber (IGHF) that can provide ultra-flattened dispersion properties as well as adiabatic mode transformation capability. A novel silica index guiding holey fiber (IGHF) design is proposed utilizing a new hollow ring structure that is composed of germanosilicate high index ring and hollow air hole imbedded in a triangular lattice structure. The proposed IGHF showed unique modal properties such as nearly zero flattened dispersion over a wide spectral range with low dispersion slope by flexible defect parameter control. It is predicted that ultra-flattened dispersion of 0±0.5ps/(km.nm) from wavelength 1360nm to 1740nm could be achieved with a slope less than 1•10-3ps/km.nm2, along with fine tuning ability of dispersion value. In contrast to prior IGHF, the proposed fibers can be achieved adiabatic mode transformation from annulus mode to a mode generated from solid multi-core fiber due to germanosilicate rings that is highly compatible to LP01 mode in conventional step index fiber. This adiabatic mode conversion of optimized IGHF for ultra-flattened dispersion contributed to low splicing loss, 0.01dB at 1550nm to dispersion compensation fiber.

Paper Details

Date Published: 1 March 2006
PDF: 9 pages
Proc. SPIE 6128, Photonic Crystal Materials and Devices IV, 61281U (1 March 2006); doi: 10.1117/12.647199
Show Author Affiliations
Soan Kim, Gwangju Institute of Science and Technology (South Korea)
Kyunghwan Oh, Gwangju Institute of Science and Technology (South Korea)


Published in SPIE Proceedings Vol. 6128:
Photonic Crystal Materials and Devices IV
Ali Adibi; Shawn-Yu Lin; Axel Scherer, Editor(s)

© SPIE. Terms of Use
Back to Top