Share Email Print

Proceedings Paper

Unified model of femtosecond laser ionization in bulk solid dielectrics
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ionization dynamics based on various ionization and carrier-loss mechanisms is theoretically studied for bulk crystalline and amorphous solid dielectrics irradiated by ultrashort (femtosecond) laser pulses. Multi-photon ionization is found to be predominant at low laser intensities (Ilas ∼ 10 TW/cm2) with small contribution of avalanche process, which is more significant for amorphous, rather than crystalline materials. At higher intensities - Ilas ~ 102 TW/cm2 - ionization is considerably enhanced by transient bandgap renormalization due to ultrafast ac-Stark effect and multi-particle interactions in electron-hole plasma, but is strongly damped by Auger recombination for electron-hole plasma densities Ne > 1020 cm-3 and accompanied by microscopic damage of corresponding dielectric materials.

Paper Details

Date Published: 28 February 2006
PDF: 12 pages
Proc. SPIE 6108, Commercial and Biomedical Applications of Ultrafast Lasers VI, 61080N (28 February 2006); doi: 10.1117/12.646660
Show Author Affiliations
Sergey I. Kudryashov, Arkansas State Univ. (United States)

Published in SPIE Proceedings Vol. 6108:
Commercial and Biomedical Applications of Ultrafast Lasers VI
Joseph Neev; Stefan Nolte; Alexander Heisterkamp; Christopher B. Schaffer, Editor(s)

© SPIE. Terms of Use
Back to Top