Share Email Print

Proceedings Paper

Microfluidic DNA extraction using a patterned aluminum oxide membrane
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A DNA extraction system was designed and fabricated using an AOM (aluminum oxide membrane) with 200 nm pores and PDMS microfluidic channels. The membrane was patterned using soft lithography techniques and SU-8 photolithography on the membrane. After making the pattern with SU-8, the AOM was observed using an SEM (scanning electro microscope) to verify the AOM structure was not damaged. From the SEM images, the AOM structure was not different after modification with SU-8. To complete the system, a PDMS mold for the microfluidic channels was made by soft lithography. Using the SU-8 mold, PDMS microchannels were cast using PDMS with a low polymer to curing agent ratio to provide adhesion between the patterned membrane and microfluidic channel. Then, the patterned membrane was sandwiched between PDMS microfluidic channels in a parallel format. The completed system was tested with 10ug of Lambda DNA mixed with the fluorescent dye SYBR Green I. Following DNA extraction, the surface of each well was examined with fluorescence microscopy while embedded in the microfluidic system. Extracted and immobilized DNA on the AOM was observed in almost every separation well. This microsystem, referred to as a membrane-on-a-chip, has potential applications in high-throughput DNA extraction and analysis, with the possibility of being integrated into polymer-based microfluidic systems.

Paper Details

Date Published: 23 January 2006
PDF: 8 pages
Proc. SPIE 6112, Microfluidics, BioMEMS, and Medical Microsystems IV, 61120L (23 January 2006); doi: 10.1117/12.646560
Show Author Affiliations
Jungkyu Kim, Univ. of Utah (United States)
Utah State Ctr. of Excellence for Biomedical Microfluidics (United States)
Bruce K. Gale, Univ. of Utah (United States)
Utah State Ctr. of Excellence for Biomedical Microfluidics (United States)

Published in SPIE Proceedings Vol. 6112:
Microfluidics, BioMEMS, and Medical Microsystems IV
Ian Papautsky; Wanjun Wang, Editor(s)

© SPIE. Terms of Use
Back to Top