Share Email Print
cover

Proceedings Paper

Fundamental considerations for multiwavelength photoacoustic molecular imaging
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Photoacoustic technology offers great promise for molecular imaging in vivo since it offers significant penetration, and optical contrast with ultrasonic spatial resolution. In this article we examine fundamental technical issues impacting capabilities of photoacoustic tomography for molecular imaging. First we examine how reconstructed photoacoustic tomography images are related to true absorber distributions by studying the modulation transfer function of a circular scanning tomographic system employing a modified filtered backprojection algorithm. We then study factors influencing quantitative estimation by developing a forward model of photoacoustic signal generation, and show conditions for which the system of equations can be inverted. Errors in the estimated optical fluence are shown to be a source of bias in estimates of molecular agent concentration. Finally we discuss noise propagation through the matrix inversion procedure and discuss implications for molecular imaging sensitivity and system design.

Paper Details

Date Published: 6 March 2006
PDF: 9 pages
Proc. SPIE 6086, Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics, 60861L (6 March 2006); doi: 10.1117/12.646392
Show Author Affiliations
Roger J. Zemp, Texas A&M Univ. (United States)
Li Li, Texas A&M Univ. (United States)
Lihong V. Wang, Texas A&M Univ. (United States)


Published in SPIE Proceedings Vol. 6086:
Photons Plus Ultrasound: Imaging and Sensing 2006: The Seventh Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics
Alexander A. Oraevsky; Lihong V. Wang, Editor(s)

© SPIE. Terms of Use
Back to Top