Share Email Print
cover

Proceedings Paper

Using optimal rendering to visually mask defective subpixels
Author(s): Dean S. Messing; Louis J. Kerofsky
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Visually Optimal Rendering is a subpixel-based method of rendering imagery on a colour matrix display that jointly maximises displayed resolution and minimises attendant colour aliasing. This paper first outlines the Constrained Optimisation framework we have developed for the design of Optimal Rendering Filters. This framework takes into account the subpixel geometry and colour primaries of the panel, and the luminance and chrominance Contrast Sensitivity Functions of the visual system. The resulting Optimal Rendering Filter Matrix can be designed for any regular 2D lattice of subpixels, including multi-primary lattices. The mathematical machinery of Visually Optimal Rendering is then applied to the problem of visually masking defective subpixels on the display. The rendering filters that result are able to reduce black subpixel defects for any primary colour to the point of near invisibility at normal viewing distances. These filters have the interesting property of being shift-varying. This property allows the Optimal Filter Array to intelligently modify the values surrounding a defect in a way that takes advantage of the visual system's differing sensitivities to luminance and chrominance detail in order to best mask a defect.

Paper Details

Date Published: 9 February 2006
PDF: 12 pages
Proc. SPIE 6057, Human Vision and Electronic Imaging XI, 60570O (9 February 2006); doi: 10.1117/12.644321
Show Author Affiliations
Dean S. Messing, Sharp Labs. of America (United States)
Louis J. Kerofsky, Sharp Labs. of America (United States)


Published in SPIE Proceedings Vol. 6057:
Human Vision and Electronic Imaging XI
Bernice E. Rogowitz; Thrasyvoulos N. Pappas; Scott J. Daly, Editor(s)

© SPIE. Terms of Use
Back to Top