Share Email Print

Proceedings Paper

Theoretical characteristics of optical polarizing films using oblique metal island films
Author(s): Kazutaka Baba
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

An ultra-thin optical polarizing film using oblique metal island (OMI) film has been investigated theoretically. The polarizing film consists of a periodic multilayer of the OMI layers and glass layers. The OMI films are composed of prolate metal nanoclusters (I.E., islands) inclining to one side. The MOI films exhibit resonance-type absportion in visible and bear-infrared region and large optical anisotropy as the resonance wavelengths for the polarization along the shorter and longer axes of the prolate metal nanoclusters are different from each other. Therefore, the multilayer using the OMI films can be used as an optical polarizing film at the resonance wavelength. The resonance wavelength depends on the aspect ratio of the prolate islands, distance between the centers of the islands, and choice of the metal. The extinction ratio and insertion loss increase with the number of the OMI layer. In this paper we show the theoretical characteristics of the polarizing films composed of the OMI layers with idea and homogeneous film structure. We have successfully designed the optical polarizing film for the wavelength of 720 nm by choosing silver as metal. The extinction ration and insertion loss of the designed polarizing film are evaluated as 30 dB and 0.03 dB, respectively. The thickness of the polarizing film is calculated as 1800 nm. When aluminum is used as the metal, the polarizing films for the shorter wavelength can be designed.

Paper Details

Date Published: 28 February 2006
PDF: 8 pages
Proc. SPIE 6116, Optical Components and Materials III, 611605 (28 February 2006); doi: 10.1117/12.643989
Show Author Affiliations
Kazutaka Baba, Sendai National College of Technology (Japan)

Published in SPIE Proceedings Vol. 6116:
Optical Components and Materials III
Michel J. F. Digonnet; Shibin Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top