Share Email Print

Proceedings Paper

Statistical shape analysis using kernel PCA
Author(s): Yogesh Rathi; Samuel Dambreville; Allen Tannenbaum
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Mercer kernels are used for a wide range of image and signal processing tasks like de-noising, clustering, discriminant analysis etc. These algorithms construct their solutions in terms of the expansions in a high-dimensional feature space F. However, many applications like kernel PCA (principal component analysis) can be used more effectively if a pre-image of the projection in the feature space is available. In this paper, we propose a novel method to reconstruct a unique approximate pre-image of a feature vector and apply it for statistical shape analysis. We provide some experimental results to demonstrate the advantages of kernel PCA over linear PCA for shape learning, which include, but are not limited to, ability to learn and distinguish multiple geometries of shapes and robustness to occlusions.

Paper Details

Date Published: 17 February 2006
PDF: 8 pages
Proc. SPIE 6064, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, 60641B (17 February 2006); doi: 10.1117/12.641417
Show Author Affiliations
Yogesh Rathi, Georgia Institute of Technology (United States)
Samuel Dambreville, Georgia Institute of Technology (United States)
Allen Tannenbaum, Georgia Institute of Technology (United States)

Published in SPIE Proceedings Vol. 6064:
Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning
Nasser M. Nasrabadi; Edward R. Dougherty; Jaakko T. Astola; Syed A. Rizvi; Karen O. Egiazarian, Editor(s)

© SPIE. Terms of Use
Back to Top