Share Email Print

Proceedings Paper

SOI diode uncooled infrared focal plane arrays
Author(s): Masafumi Kimata; Masashi Ueno; Munehisa Takeda; Toshiki Seto
Format Member Price Non-Member Price
PDF $17.00 $21.00

Paper Abstract

An uncooled infrared focal plane array (IR FPA) is a MEMS device that integrates an array of tiny thermal infrared detector pixels. An SOI diode uncooled IR FPA is a type that uses freestanding single-crystal diodes as temperature sensors and has various advantages over the other MEMS-based uncooled IR FPAs. Since the first demonstration of an SOI diode uncooled IR FPA in 1999, the pixel structure has been improved by developing sophisticated MEMS processes. The most advanced pixel has a three-level structure that has an independent metal reflector for interference infrared absorption between the temperature sensor (bottom level) and the infrared-absorbing thin metal film (top level). This structure makes it possible to design pixels with lower thermal conductance by allocating more area for thermal isolation without reducing infrared absorption. The new MEMS process for the three-level structure includes a XeF2 dry bulk silicon etching process and a double organic sacrificial layer surface micromachining process. Employing advanced MEMS technology, we have developed a 640 x 480-element SOI diode uncooled IR FPA with 25-μm square pixels. The noise equivalent temperature difference of the FPA is 40 mK with f/1.0 optics. This result clearly demonstrates the great potential of the SOI diode uncooled IR FPA for high-end applications. In this paper, we explain the advances and state-of-the-art technology of the SOI diode uncooled IR FPA.

Paper Details

Date Published: 28 February 2006
PDF: 11 pages
Proc. SPIE 6127, Quantum Sensing and Nanophotonic Devices III, 61270X (28 February 2006); doi: 10.1117/12.640339
Show Author Affiliations
Masafumi Kimata, Ritsumeikan Univ. (Japan)
Masashi Ueno, Mitsubishi Electric Corp. (Japan)
Munehisa Takeda, Mitsubishi Electric Corp. (Japan)
Toshiki Seto, Mitsubishi Electric Corp. (Japan)

Published in SPIE Proceedings Vol. 6127:
Quantum Sensing and Nanophotonic Devices III
Manijeh Razeghi; Gail J. Brown, Editor(s)

© SPIE. Terms of Use
Back to Top