Share Email Print
cover

Proceedings Paper

Ultrasonic guided-wave monitoring of composite bonded joints using macro fiber composite transducers
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The monitoring of adhesively-bonded joints through the use of ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of Unmanned Aerial Vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly-cured adhesive and disbonded interfaces. The guided wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by utilizing macro fiber composite (MFC) transducers which are inexpensive, flexible, highly robust, and viable candidates for application in on-board monitoring systems. Based upon change in energy transmission, the presence of damage is successfully identified through features extracted in both the time domain and discrete wavelet transform domain. A unique "passive" version of the diagnostic system is also demonstrated experimentally, whereby MFC sensors are utilized for detecting and locating simulated active damage in an aluminum plate. By exploiting the directivity behavior of MFC sensors, a damage location algorithm which is independent of wave speed is developed. Application of this approach in CFRP components may alleviate difficulties associated with damage location in highly anisotropic systems.

Paper Details

Date Published: 11 April 2006
PDF: 9 pages
Proc. SPIE 6174, Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 61742D (11 April 2006); doi: 10.1117/12.640036
Show Author Affiliations
Howard Matt, Univ. of California, San Diego (United States)
Ivan Bartoli, Univ. of California, San Diego (United States)
Stefano Coccia, Univ. of California, San Diego (United States)
Francesco Lanza di Scalea, Univ. of California, San Diego (United States)
Joseph Oliver, Univ. of California, San Diego (United States)
John Kosmatka, Univ. of California, San Diego (United States)
Gyuhae Park, Los Alamos National Lab. (United States)
Charles Farrar, Los Alamos National Lab. (United States)


Published in SPIE Proceedings Vol. 6174:
Smart Structures and Materials 2006: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
Masayoshi Tomizuka; Chung-Bang Yun; Victor Giurgiutiu, Editor(s)

© SPIE. Terms of Use
Back to Top