Share Email Print
cover

Proceedings Paper

A model for dark current characterization and simulation
Author(s): Richard L. Baer
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The Poisson and Normal probability distributions poorly match the dark current histogram of a typical image sensor. The histogram has only positive values, and is positively skewed (with a long tail). The Normal distribution is symmetric (and possesses negative values), while the Poisson distribution is discrete. Image sensor characterization and simulation would benefit from a different distribution function, which matches the experimental observations better. Dark current fixed pattern noise is caused by discrete randomly-distributed charge generation centers. If these centers shared a common charge-generation rate, and were distributed uniformly, the Poisson distribution would result. The fact that it does not indicates that the generation rates vary, a spatially non-uniform amplification is applied to the centers, or that the spatial distribution of centers is non-uniform. Monte Carlo simulations have been used to examine these hypotheses. The Log-Normal, Gamma and Inverse Gamma distributions have been evaluated as empirical models for characterization and simulation. These models can accurately match the histograms of specific image sensors. They can also be used to synthesize the dark current images required in the development of image processing algorithms. Simulation methods can be used to create synthetic images with more complicated distributions.

Paper Details

Date Published: 6 February 2006
PDF: 12 pages
Proc. SPIE 6068, Sensors, Cameras, and Systems for Scientific/Industrial Applications VII, 606805 (6 February 2006); doi: 10.1117/12.639844
Show Author Affiliations
Richard L. Baer, Agilent Labs. (United States)


Published in SPIE Proceedings Vol. 6068:
Sensors, Cameras, and Systems for Scientific/Industrial Applications VII
Morley M. Blouke, Editor(s)

© SPIE. Terms of Use
Back to Top