Share Email Print
cover

Proceedings Paper

A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optics
Author(s): Mike Runkel; Ruth Hawley-Fedder; Clay Widmayer; Wade Williams; Carolyn Weinzapfel; Dave Roberts
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A multi-wavelength laser based system has been constructed to measure defect induced beam modulation (diffraction) from ICF class laser optics. The Nd:YLF-based modulation measurement system (MMS) uses simple beam collimation and imaging to capture diffraction patterns from optical defects onto an 8-bit digital camera at 1053, 527 and 351 nm. The imaging system has a field of view of 4.5 x 2.8 mm2 and is capable of imaging any plane from 0 to 30 cm downstream from the defect. The system is calibrated using a 477 micron chromium dot on glass for which the downstream diffraction patterns were calculated numerically. Under nominal conditions the system can measure maximum peak modulations of approximately 7:1. An image division algorithm is used to calculate the peak modulation from the diffracted and empty field images after the baseline residual light background is subtracted from both. The peak modulation can then be plotted versus downstream position. The system includes a stage capable of holding optics up to 50 pounds with x and y translation of 40 cm and has been used to measure beam modulation due to solgel coating defects, surface digs on KDP crystals, lenslets in bulk fused silica and laser damage sites mitigated with CO2 lasers.

Paper Details

Date Published: 7 February 2006
PDF: 9 pages
Proc. SPIE 5991, Laser-Induced Damage in Optical Materials: 2005, 59912H (7 February 2006); doi: 10.1117/12.638824
Show Author Affiliations
Mike Runkel, Lawrence Livermore National Lab. (United States)
Ruth Hawley-Fedder, Lawrence Livermore National Lab. (United States)
Clay Widmayer, Lawrence Livermore National Lab. (United States)
Wade Williams, Lawrence Livermore National Lab. (United States)
Carolyn Weinzapfel, Lawrence Livermore National Lab. (United States)
Dave Roberts, Lawrence Livermore National Lab. (United States)


Published in SPIE Proceedings Vol. 5991:
Laser-Induced Damage in Optical Materials: 2005
Gregory J. Exarhos; Arthur H. Guenther; Keith L. Lewis; Detlev Ristau; M.J. Soileau; Christopher J. Stolz, Editor(s)

© SPIE. Terms of Use
Back to Top