Share Email Print

Proceedings Paper

Optimal distributed computing resources for mask synthesis and tape-out in production environment: an economic analysis
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

At the deep Subwavelength process nodes, the use of the aggressive optical proximity correction (OPC) and resolution enhancement techniques (RET) is fostering an exponential increase in output database size causing the CPU time required for mask tape-out to increase significantly. This sets up challenging scenarios for integrated device manufacturers (IDMs), and Foundries. For integrated device manufacturers (IDMs), this can impact the time-to-market for their products where even a few days delay could have a huge commercial impact and loss of market window opportunity. For foundries, a shorter turnaround time provides a competitive advantage in their demanding market, too slow could mean customers looking elsewhere for these services; while a fast turnaround may even command a higher price. With FAB turnaround for a CMOS process around 20-30 days, a delay of several days in mask tapeout would contribute a significant fraction to the total time to deliver prototypes. Unlike silicon processing, masks tape-out time can be decreased by applying a combination of extra computing resources and enhancements in the OPC tool like Fracture Friendly OPC (FFOPC) . Mask tape-out groups are taking advantage of the ever-decreasing hardware cost and increasing power of commodity processors. The significant distributability inherent in some commercial Mask Synthesis software can be leveraged to address this critical business issue. Different implementations have different fractions of the code that cannot be parallelized and this affects the efficiency with which it scales, as is described by Amdahl's law. Very few are efficient enough to allow the effective use of 100's of processors, enabling run times to drop from days to only minutes. What follows is a cost aware methodology to quantify the scalability of this class of software, and thus act as a guide to estimating the optimal investment in terms of hardware and software licenses.

Paper Details

Date Published: 8 November 2005
PDF: 9 pages
Proc. SPIE 5992, 25th Annual BACUS Symposium on Photomask Technology, 59924C (8 November 2005); doi: 10.1117/12.637424
Show Author Affiliations
Chris Cork, Synopsys, Inc. (United States)
Manoj Chacko, Synopsys, Inc. (United States)
Shimon Levi, Tower Semiconductor Ltd. (Israel)

Published in SPIE Proceedings Vol. 5992:
25th Annual BACUS Symposium on Photomask Technology
J. Tracy Weed; Patrick M. Martin, Editor(s)

© SPIE. Terms of Use
Back to Top