Share Email Print
cover

Proceedings Paper

Absorption and photocurrent properties of low-temperature laser deposited thin-film GaAs on glass
Author(s): A. Erlacher; M. Ambrico; G. Perna; L. Schiavulli; T. Ligonzo; H. Jaeger; B. Ullrich
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The absorption edge of thin-film GaAs on glass has been investigated with the standard constant photocurrent method (s-CPM) method and photocurrent analysis. The films have been formed by pulsed-laser deposition (PLD) employing the 532 nm emission of a YAG:Nd laser (6 ns, 10 Hz). Notably, the films have been deposited without heating the substrate. Fitting the measured absorption data with the crystalline density of states and the Urbach tail a very good agreement has been found. X-ray analysis showed that the films are predominately oriented towards the (111) plane. The function used to fit the absorption data describes the photocurrent data at different biases as well. Annealing of the samples up to 400 K did not cause notable changes in the absorption edge and overall photocurrent spectra. The presented results reveal that "cold" PLD, i.e., without substrate heating, forms high-quality oriented photosensitive thin-film GaAs on glass, which hardly alters its optoelectronic features under thermal treatment. Under this prospect and due to the relative ease to form the films, PLD GaAs might be of interest for applications in optoelectronics and photovoltaics.

Paper Details

Date Published: 7 June 2005
PDF: 7 pages
Proc. SPIE 5850, Advanced Laser Technologies 2004, (7 June 2005); doi: 10.1117/12.633697
Show Author Affiliations
A. Erlacher, Bowling Green State Univ. (United States)
M. Ambrico, CNR-IMIP (Italy)
G. Perna, Univ. di Foggia (Italy)
Istituto Nazionale di Fisica della Materia (Italy)
L. Schiavulli, Univ. degli Studi di Bari (Italy)
Istituto Nazionale di Fisica della Materia (Italy)
T. Ligonzo, Univ. degli Studi di Bari (Italy)
Istituto Nazionale di Fisica della Materia (Italy)
H. Jaeger, Miami Univ. (United States)
B. Ullrich, Bowling Green State Univ. (United States)


Published in SPIE Proceedings Vol. 5850:
Advanced Laser Technologies 2004
Ivan A. Shcherbakov; Anna Giardini; Vitali I. Konov; Vladimir I. Pustovoy, Editor(s)

© SPIE. Terms of Use
Back to Top