Share Email Print
cover

Proceedings Paper

Infrared antenna metrology
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Infrared antennas are a novel type of detectors that couples electromagnetic radiation into metallic structures and feed it to a rectifying element. As their radio and millimeter counterparts, they can be characterized by parameters explaining their response in a variety of situations. The size of infrared antennas scales with the detected wavelength. Then, specifically designed experimental set-ups need to be prepared for their characterization. The measurement of the spatial responsivity map of infrared antennas is one of the parameters of interest, but other parameters can be defined to describe, for example, their directional response, or polarization response. One of the inputs to measure the spatial responsivity map is the spatial distribution of the beam irradiance illuminating the antenna-coupled detector. The measured quantity is actually a map of the response of the detector when it moves under the beam illumination. This measurement is given as the convolution of the actual responsivity map and the beam irradiance distrbution. The uncertainties, errors, and artifacts incorporated along the measurement procedure are analyzed by using the Principal Component Analysis (PCA). By means of this method is possible to classify different sources of uncertainty. PCA is applied as a metrology tool to characterize the accuracy and repeatability of the experimental set-up. Various examples are given to describe the application of the PCA to the characterization of the deconvolution procedure, and to define the responsivity and the signal-to-noise ratio of the measured results.

Paper Details

Date Published: 12 October 2005
PDF: 11 pages
Proc. SPIE 5987, Electro-Optical and Infrared Systems: Technology and Applications II, 59870L (12 October 2005); doi: 10.1117/12.631217
Show Author Affiliations
José Manuel López-Alonso, College of Optics and Photonics/Univ. of Central Florida (United States)
Tasneem Mandviwala, College of Optics and Photonics/Univ. of Central Florida (United States)
Javier Alda, Univ. Complutense of Madrid (Spain)
B. Lail, College of Optics and Photonics/Univ. of Central Florida (United States)
Glenn Boreman, College of Optics and Photonics/Univ. of Central Florida (United States)


Published in SPIE Proceedings Vol. 5987:
Electro-Optical and Infrared Systems: Technology and Applications II
Ronald G. Driggers; David A. Huckridge, Editor(s)

© SPIE. Terms of Use
Back to Top