Share Email Print
cover

Proceedings Paper

In situ monitoring of sulfuric acid decomposition by Fourier transform infrared (FT-IR) spectroscopy in the sulfur iodine thermochemical reaction for the production of hydrogen
Author(s): Dion Rivera
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

A potential way to produce large amounts of hydrogen for energy needs is the thermal breakdown of sulfuric acid (H2SO4) to oxygen, water, and sulfur dioxide (SO2). The sulfur dioxide can then be reacted with iodide to produce hydrogen iodide and ultimately hydrogen. In order to maximize the efficiency of the process it would be ideal to make in situ measurements of SO3, SO2, H2SO4, and water in the process stream in order to maximize the efficiency of the system. Fourier transform infrared (FT-IR) spectroscopy is well suited to detection of these gas phase species as they all contain strong infrared modes in the 900 to 3000 wavenumber region, 11 to 3.3 μm. However, the reactive nature of the gases and the high temperatures at which the reactions are run, 650 to 800 °C, makes standard implementation of FT-IR in process monitoring challenging. This is because the infrared detection most be done in a stand off mode and typical window and cell materials used for infrared monitoring will break down under these extreme conditions. This paper presents modifications to typically FT-IR window materials to allow them to be more robust in the environment of interest and gasket materials that can withstand both high temperatures and the oxidative conditions. Infrared spectra of SO2, SO3, and H2SO4 at elevated temperatures obtained with our system and the quantitative results are presented.

Paper Details

Date Published: 5 November 2005
PDF: 12 pages
Proc. SPIE 5998, Sensors for Harsh Environments II, 59980F (5 November 2005); doi: 10.1117/12.630874
Show Author Affiliations
Dion Rivera, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 5998:
Sensors for Harsh Environments II
Anbo Wang, Editor(s)

© SPIE. Terms of Use
Back to Top