Share Email Print

Proceedings Paper

Hole photogeneration in dual-layer photoreceptors
Author(s): Michel F. Molaire; Edward H. Magin; Paul M. Borsenberger
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Hole photogeneration efficiencies have been measured in a series of dual layer photoreceptors containing generation layers of a fluorinated titanylphthalocyanine (TiO(F4-Pc)). The transport layers contained different arylamine (AA) derivatives in a polycarbonate. The AA molcules were selected for differences in oxidation potential. The efficiencies are independent of wavelength and strongly dependent on the field and the composition of the transport layer. At high fields and high AA concentrations, the efficiencies approach 0.80. The results are described by a surface-enhanced exciton dissociation argument. The argument is premised on the assumption that the absorption of a photon creates a bound electron-hole pair, which diffuses to the surface of the pigment particle, where it either recombines or dissociates into a free electron hole pair through an interaction of the donor component of the transport layer. The dissociation efficiency increases with increasing oxidation potential of the donor component. The field dependence of the dissociation process is attributed to geminate recombination and described by a theory due to Onsager. Keywords: dual layer photoreceptors, geminate recombination, free carrier photogeneration

Paper Details

Date Published: 9 October 1997
PDF: 8 pages
Proc. SPIE 3144, Xerographic Photoreceptors and Organic Photorefractive Materials II, (9 October 1997); doi: 10.1117/12.626570
Show Author Affiliations
Michel F. Molaire, Eastman Kodak Co. (United States)
Edward H. Magin, Eastman Kodak Co. (United States)
Paul M. Borsenberger, Eastman Kodak Co. (United States)

Published in SPIE Proceedings Vol. 3144:
Xerographic Photoreceptors and Organic Photorefractive Materials II
Stephen Ducharme; Stephen Ducharme; James W. Stasiak, Editor(s)

© SPIE. Terms of Use
Back to Top