Share Email Print
cover

Proceedings Paper

Harsh environments minimally invasive optical sensing technique for extreme temperatures: 1000 degrees C and approaching 2500 degrees C
Author(s): Nabeel Agha Riza; Muzamil Arain; Frank Perez
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

To the best of our knowledge, for the first time is designed and demonstrated a single crystal Silicon Carbide (SiC)-based minimally invasive smart optical sensor suited for harsh environments and temperatures reaching 2500 °C. The novel sensor design is based on an agile wavelength source, instantaneous single wavelength interferometry, full optical power cycle data acquisition, free-space targeted laser beam, multiple single crystal thick SiC optical frontend chips, and multi-wavelength signal processing for unambiguous temperature measurements to form a fast and distributed smart optical sensor system. Experiments conducted using a 1550 nm eye safe band tunable laser and a 300 micron coating-free thick SiC chip demonstrate temperature sensing from room temperature to 1000 °C with a measured 1.3 °C resolution. Applications for the proposed sensor include use in fossil fuel-based power systems, aerospace/aircraft systems, satellite systems, deep space exploration systems, and drilling and oil mining industries.

Paper Details

Date Published: 23 May 2005
PDF: 4 pages
Proc. SPIE 5855, 17th International Conference on Optical Fibre Sensors, (23 May 2005); doi: 10.1117/12.623399
Show Author Affiliations
Nabeel Agha Riza, Nuonics, Inc. (United States)
Muzamil Arain, College of Optics and Photonics/Univ. of Central Florida (United States)
Frank Perez, Nuonics, Inc. (United States)


Published in SPIE Proceedings Vol. 5855:
17th International Conference on Optical Fibre Sensors
Marc Voet; Reinhardt Willsch; Wolfgang Ecke; Julian Jones; Brian Culshaw, Editor(s)

© SPIE. Terms of Use
Back to Top