Share Email Print
cover

Proceedings Paper

Properties of circularly symmetric guided waves in metal nano-wires
Author(s): Ari J. Viitanen
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Interest of using metal wire structures as transmission-lines in frequencies much higher than microwave region is recently arised. In this theoretical study guided waves in circular metal wire is investigated in infrared frequency range or even in optical region for transmission-line applications. In this frequency region the permittivity of the metal is not any more described by the conductivity of the metal but obeys the Drude model. The operational frequency region is between the electron scattering frequency and the plasma frequency. Just below the plasma frequency the permittivity is negative and almost a real number. The axial field components are written in terms of modified Bessel functions. The eigenvalue equation is evaluated for the guided modes by equating the continuity condition of the tangential field components at the interface of the free space and the wire region. The dispersion curves are calculated numerically and the propagation factors inside and outside of the wire region is illustrated as well as the propagation factor in axial direction. Also the field distribution in the cross-section of the structure is analysed. Analysing the properties of the propagating fields in metal wire, it is found that some modes are more and more tightly bound into the surface of the metal wire when the frequency approaces to the plasma resonant frequency. Using typical values for metals, the proper radius of the wire is in a range of about a hundred nanometers which is much below the wavelength of the guided mode even in optical region. The effect is analogous to that for guided fields in microwave frequency range for the circularly symmetric mode propagating in the metal wire surrounded by a thin dielectric layer. Now the similar effect is occured in subwavelenth region due to plasma phenomena. In this study it is demonstrated that subwavelength metal wire structures may have applications as transmission-line structures in infrared or optical region.

Paper Details

Date Published: 28 September 2005
PDF: 8 pages
Proc. SPIE 5955, Metamaterials, 59550Z (28 September 2005); doi: 10.1117/12.622819
Show Author Affiliations
Ari J. Viitanen, Helsinki Univ. of Technology (Finland)


Published in SPIE Proceedings Vol. 5955:
Metamaterials
Tomasz Szoplik; Ekmel Özbay; Costas M. Soukoulis; Nikolay I. Zheludev, Editor(s)

© SPIE. Terms of Use
Back to Top