Share Email Print
cover

Proceedings Paper

Gaussian beam diffraction in inhomogeneous media: solution in frame of complex geometrical optics
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The method of paraxial complex geometrical optics is presented to describe Gaussian beam diffraction in arbitrary smoothly inhomogeneous media, including lens-like media. The method modifies and specifies the results by Babic' (1968), Kirpichnikova (1971), Cerveny, Popov, Psencik (1982), Cerveny (1983, 2001), Timofeev (1995) and Pereverzev (1996) as applied to the optical problems. The method of paraxial complex geometrical optics reduces the problem of Gaussian beam diffraction in inhomogeneous media to the solution of the system of the ordinary differential equations of first order, which can be readily calculated numerically by the Runge-Kutta method. Thereby the paraxial complex geometrical optics radically simplifies description of Gaussian beam diffraction in inhomogeneous media as compared to the numerical methods of wave optics. By the way of example the known analytical solution for Gaussianbeam diffraction both in a free space and in lens-like medium (Bornatici, Maj 2003) are presented. It is pointed out, that the method of paraxial complex geometrical optics turns out to be equivalent to the solutions of the abridged parabolic wave equation.

Paper Details

Date Published: 5 October 2005
PDF: 12 pages
Proc. SPIE 5949, Nonlinear Optics Applications, 59491F (5 October 2005); doi: 10.1117/12.622044
Show Author Affiliations
Yu. A. Kravtsov, Maritime Univ. of Szczecin (Poland)
P. Berczynski, Szczecin Univ. of Technology (Poland)


Published in SPIE Proceedings Vol. 5949:
Nonlinear Optics Applications
Miroslaw A. Karpierz; Allan Dawson Boardman; George I. Stegeman, Editor(s)

© SPIE. Terms of Use
Back to Top