Share Email Print

Proceedings Paper

Development of a biophotonics technician-training program: directions for the 21st Century
Author(s): James F. Shackelford; Joel Gellman; Srini Vasan; Robert A. Hall; Don E. Goodwin; Marco Molinaro; Dennis Matthews
Format Member Price Non-Member Price
PDF $17.00 $21.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Albuquerque Technical Vocational Institute (TVI) is collaborating with the National Science Foundation (NSF) funded Center for Biophotonics Science and Technology (CBST) headquartered at the University of California, Davis in order to develop a biophotonics curriculum for community colleges nationwide. TVI began the formal collaboration to bring about critically needed training and education that will ultimately create new jobs and employment opportunities in the field of biophotonics. "Biophotonics" is the science of generating and harnessing light to detect, image and manipulate biological materials. CBST chose TVI as a partner because of the Institute's current high-level photonics and biotechnology programs. In addition, TVI is a part of the "Albuquerque Model" that involves exposure to photonics education from the middle school level through graduate education at the University of New Mexico. Three middle schools feed into the West Mesa High School Photonics Academy, whose students then move on to TVI for advanced training. CBST brings together scientists, industry, educators and the community to research and develop applications for biophotonics. Roughly 100 researchers-including physical scientists, life scientists, physicians and engineers from UC Davis, Lawrence Livermore National Laboratory, UC Berkeley, UC San Francisco, Alabama A&M University, Stanford University, University of Texas at San Antonio, Fisk University and Mills College-are collaborating in this rapidly developing area of research. Applications of biophotonics range from using light to image or selectively treat tumors, to sequencing DNA and identifying single biomolecules within cells.

Paper Details

Date Published: 8 June 2005
PDF: 9 pages
Proc. SPIE 5827, Opto-Ireland 2005: Photonic Engineering, (8 June 2005); doi: 10.1117/12.619530
Show Author Affiliations
James F. Shackelford, Univ. of California/Davis (United States)
Joel Gellman, Albuquerque Technical Vocational Institute (United States)
Srini Vasan, Albuquerque Technical Vocational Institute (United States)
Robert A. Hall, Albuquerque Technical Vocational Institute (United States)
Don E. Goodwin, Albuquerque Technical Vocational Institute (United States)
Marco Molinaro, Univ. of California/Davis (United States)
Dennis Matthews, Univ. of California/Davis (United States)

Published in SPIE Proceedings Vol. 5827:
Opto-Ireland 2005: Photonic Engineering
Thomas J. Glynn; John T. Sheridan; Brian W. Bowe; Ronan F. O'Dowd; Gerard M. O'Connor; Aidan J.H. Flanagan; Gerard D. O'Sullivan; Gerald Byrne; Jonathan Magee, Editor(s)

© SPIE. Terms of Use
Back to Top