Share Email Print
cover

Proceedings Paper

The impact of mask errors on the critical dimensions of butting feature on 65nm node
Author(s): Fei Zhang; Yanqiu Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The semiconductor industry is aggressively pushed to produce smaller and smaller feature sizes from their existing base of lithography systems. With the line-width of integrate circuit (IC) narrowing and ArF immersion lithography technology arising, the mask error factor (MEF) becomes a significant problem because it consumes a large anticipated portion of the CD tolerance budget. This paper discusses the mask error’s impact on the CDs of butting feature using an ArF immersion lithography system. On 65nm node, the variation of image contrast, NILS (Nominal Image Log-Slope), line width and gap width, which results from mask errors, is calculated. The mask errors include puncture, burr, blotch, and mask bias, etc. The rules of mask error’s impact on image contrast, NILS, line width and gap width are concluded. The puncture errors enlarge the gap width, while, the burr and blotch errors reduce the gap width. All mask errors can magnify the resist CD error and result in the FE windows shrinking. The relations of exposure dose and gap width according to butting pattern are presented. The variation of gap width is compensated by exposure dose’s tuning. The relations of polarization state and gap width are discussed. By adjusting polarization state, the variation of gap width, which results from mask errors, can be compensated. After polarization state adjusted, the image contrast, NILS, line width and gap width are calculated again. By comparing the image contrast, NILS, line width and gap width of butting pattern before and after compensated, the merits of adjusting the exposure dose and polarization state to compensate the impact of mask errors are presented.

Paper Details

Date Published: 28 June 2005
PDF: 9 pages
Proc. SPIE 5853, Photomask and Next-Generation Lithography Mask Technology XII, (28 June 2005); doi: 10.1117/12.617214
Show Author Affiliations
Fei Zhang, Institute of Electrical Engineering, Chinese Academy of Sciences (China)
Graduate School of the Chinese Academy of Sciences (China)
Yanqiu Li, Institute of Electrical Engineering, Chinese Academy of Sciences (China)


Published in SPIE Proceedings Vol. 5853:
Photomask and Next-Generation Lithography Mask Technology XII
Masanori Komuro, Editor(s)

© SPIE. Terms of Use
Back to Top