Share Email Print

Proceedings Paper

Radiation damage to amorphous-carbon optical coatings
Author(s): L. Juha; M. Bittner; M. De Grazia; J. Feldhaus; J. Gaudin; S. Guizard; S. Jacobi; M. Kozlova; J. Krasa; J. Krzywinski; H. Merdji; C. Michaelsen; T. Mocek; R. Nietubyc; M. Jurek; J. Polan; A. R. Prag; B. Rus; R. Sobierajski; B. Steeg-Keitel; M. Stoermer; M. Stupka; V. Vorlicek; J. Wiesmann; J. Wild
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The multi-mJ, 21-nm soft-x-ray laser at the PALS facility was focused on the surface of amorphous carbon (a-C) coating, developed for heavily loaded XUV/x-ray optical elements. AFM (Atomic Force Microscopy) images show 3-micrometer expansion of the irradiated material. Raman spectra, measured with an Ar+ laser microbeam in both irradiated and unirradiated areas, confirm a high degree of graphitization in the irradiated layer. In addition to this highfluence (~ 1 J/cm2), single-shot experiment, it was necessary to carry out an experiment to investigate consequences of prolonged XUV irradiation at relatively low fluence. High-order harmonic (HH) beam generated at the LUCA facility in CEA/Saclay Research Center was used as a source of short-wavelength radiation delivering high-energy photons on the surface at a low single-shot fluence but with high-average power. a-C irradiated at a low fluence, i.e., < 0.1 mJ/cm2 by many HH shots exhibits an expansion for several nanometers. Although it is less dramatic change of surface morphology than that due to single-hot x-ray-laser exposure even the observed nanometer-sized changes caused by the HH beam on a-C surface could influence reflectivity of a grazing incidence optical element. These results seem to be important for estimating damages to the surfaces of highly irradiated optical elements developed for guiding and focusing the ultraintense XUV/x-ray beams provided by new generation sources (i.e., VUV FEL and XFEL in Hamburg; LCLS in Stanford) because, up to now, only melting and vaporization, but not graphitization, have been taken into account.

Paper Details

Date Published: 30 August 2005
PDF: 6 pages
Proc. SPIE 5917, Fourth Generation X-Ray Sources and Optics III, 59170F (30 August 2005); doi: 10.1117/12.617125
Show Author Affiliations
L. Juha, Instytut Fizyki (Czech Republic)
M. Bittner, Instytut Fizyki (Czech Republic)
Charles Univ. in Prague (Czech Republic)
M. De Grazia, CEA Saclay (France)
J. Feldhaus, Deutsche Elektronen-Synchrotron (Germany)
J. Gaudin, École Polytechnique (France)
S. Guizard, École Polytechnique (France)
S. Jacobi, GKSS-Forschungszentrum Geeshacht, GmbH (Germany)
M. Kozlova, Instytut Fizyki (Czech Republic)
J. Krasa, Instytut Fizyki (Czech Republic)
J. Krzywinski, Instytut Fizyki (Poland)
H. Merdji, CEA Saclay (France)
C. Michaelsen, Incoatec GmbH (Germany)
T. Mocek, Instytut Fizyki (Czech Republic)
R. Nietubyc, Instytut Fizyki (Poland)
M. Jurek, Instytut Fizyki (Poland)
J. Polan, Instytut Fizyki (Czech Republic)
A. R. Prag, Instytut Fizyki (Czech Republic)
B. Rus, Instytut Fizyki (Czech Republic)
R. Sobierajski, Politechnika Warszawska (Poland)
B. Steeg-Keitel, Deutsche Elektronen-Synchrotron (Germany)
M. Stoermer, GKSS-Forschungszentrum Geeshacht, GmbH (Germany)
M. Stupka, Instytut Fizyki (Czech Republic)
V. Vorlicek, Instytut Fizyki (Czech Republic)
J. Wiesmann, Incoatec GmbH (Germany)
J. Wild, Charles Univ. in Prague (Czech Republic)

Published in SPIE Proceedings Vol. 5917:
Fourth Generation X-Ray Sources and Optics III
Roman O. Tatchyn; Sandra G. Biedron; Wolfgang Eberhardt, Editor(s)

© SPIE. Terms of Use
Back to Top