Share Email Print

Proceedings Paper

A novel green phosphor for three band white LEDs
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Current technology of lighting is Solid state lighting using LED's (SSL-LED). The aim of the present study is to find the critical concentration of Eu2+ for high emission intensity and also the role of Ce3+ co-doping on the absorption and emission properties in the host BaMgSiO4. Photoluminescence emission of Eu2+ in BaMgSiO4 when excited with 370 nm shows a broad band in the region 450 to 550 nm with a maximum at 502 nm and a shoulder at ~480 nm and one more band at ~ 400nm. The three emissions are due to Eu2+ in three different Ba sites in the lattice. Studies on Ba1 xEuxMgSiO4 [x = 0.0025 - 0.1 in steps of 0.0025] show that the emission intensity is maximum for x = 0.075 and a decrease in emission intensity is observed for higher x values. Ce3+ luminescence is studied for the first time in BaMgSiO4. Ce3+ emission occurs as a broad band with maximum at 430 nm when excited with 356 nm. The Eu2+ excitation that occurs in the region 250 - 420 nm covers both the Ce3+ absorption and emission. Hence Ce3+ to Eu2+ energy transfer is possible in BaMgSiO4. In the case of Ba0.99 xEu0.01CexMgSiO4 [ x = 0.0025 - 0.1 ], it is observed that the emission intensity of Eu2+ increases with increasing Ce3+ content up to 0.01. This result proves the energy transfer from Ce3+ to Eu2+. Thus, the co-doping of Ce3+ also enhances the absorption of Eu2+ in the near UV to blue region where the LED emission occurs. BaMgSiO4:Eu2+, Ce3+ with bright green emission can find potential application as a green phosphor for SSL-LED technology.

Paper Details

Date Published: 14 September 2005
PDF: 9 pages
Proc. SPIE 5941, Fifth International Conference on Solid State Lighting, 594110 (14 September 2005); doi: 10.1117/12.614299
Show Author Affiliations
Sivakumar Vaidyanathan, Indian Institute of Technology, Madras (India)
Varadaraju Upadhyayula, Indian Institute of Technology, Madras (India)

Published in SPIE Proceedings Vol. 5941:
Fifth International Conference on Solid State Lighting
Ian T. Ferguson; John C. Carrano; Tsunemasa Taguchi; Ian E. Ashdown, Editor(s)

© SPIE. Terms of Use
Back to Top