Share Email Print
cover

Proceedings Paper

Geometrical methods for accurate forensic videogrammetry. Part II. Reducing complexity of Cartesian scene measurements via epipolar registration
Author(s): Lenny Rudin; Pascal Monasse; Ping Yu
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We present the technical steps involved in a new method of photogrammetry, requiring much fewer measurements in the observed scene, no availability of the original camera’s calibration, and no prior knowledge of its position and orientation. The practical setup involves minimal humans measuring intervention. This largely automatic configuration permits to get accurate lengths, angles, and areas measurements in the original scene without prospecting the 3-D Cartesian coordinates for known points. The crucial observation is that the two snapshots, even if not simultaneous and from different cameras, provide a stereo system. Therefore the correspondence of 8 points in the views gives the epipolar geometry of the stereo setup, and as one of the camera is calibrated, the calibration can be “transferred” to the other camera through the epipolar matrix. This transfer yields a calibration of the original camera (internal parameters and position in the scene) even if it is not available anymore, its settings have changed, its orientation is different or it was moved. Thus we replace the technically difficult, time-consuming, and potentially error prone data collection by the epipolar registration and some rudimentary scene measurements. This new technique can also be applied to the task of photo-comparison.

Paper Details

Date Published: 14 March 2005
PDF: 12 pages
Proc. SPIE 5685, Image and Video Communications and Processing 2005, (14 March 2005); doi: 10.1117/12.614158
Show Author Affiliations
Lenny Rudin, Cognitech, Inc. (United States)
Pascal Monasse, Cognitech, Inc. (United States)
Ping Yu, Cognitech, Inc. (United States)


Published in SPIE Proceedings Vol. 5685:
Image and Video Communications and Processing 2005
Amir Said; John G. Apostolopoulos, Editor(s)

© SPIE. Terms of Use
Back to Top